Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 244: 125329, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37307970

RESUMO

The use of advanced electroactive catalysts enhances the performance of electrochemical biosensors in real-time biomonitoring and has received much attention owing to its excellent physicochemical and electrochemical possessions. In this work, a novel biosensor was developed based on the electrocatalytic activity of functionalized vanadium carbide (VC) material, including VC@ruthenium (Ru), VC@Ru-polyaniline nanoparticles (VC@Ru-PANI-NPs) as non-enzymatic nanocarriers for the fabrication of modified screen-printed electrode (SPE) to detect acetaminophen in human blood. As-prepared materials were characterized using SEM, TEM, XRD, and XPS techniques. Biosensing was carried out using cyclic voltammetry and differential pulse voltammetry techniques and has revealed imperative electrocatalytic activity. A quasi-reversible redox method of the over-potential of acetaminophen increased considerably compared with that at the modified electrode and the bare SPE. The excellent electrocatalytic behaviour of VC@Ru-PANI-NPs/SPE is attributed to its distinctive chemical and physical properties, including rapid electron transfer, striking á´«-á´« interface, and strong adsorptive capability. This electrochemical biosensor exhibits a detection limit of 0.024 µM, in a linear range of 0.1-382.72 µM with a reproducibility of 2.45 % relative standard deviation, and a good recovery from 96.69 % to 105.59 %, the acquired results ensure a better performance compared with previous reports. The enriched electrocatalytic activity of this developed biosensor is mainly credited to its high surface area, better electrical conductivity, synergistic effect, and abundant electroactive sites. The real-world utility of the VC@Ru-PANI-NPs/SPE-based sensor was ensured via the investigation of biomonitoring of acetaminophen in human blood samples with satisfactory recoveries.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Rutênio , Humanos , Acetaminofen/química , Vanádio , Reprodutibilidade dos Testes , Nanopartículas/química , Polímeros , Técnicas Eletroquímicas , Eletrodos
2.
Environ Res ; 227: 115578, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36848977

RESUMO

Efforts to restrict the emergence and progression of multidrug-resistant bacterial strains should heavily involve the scientific community, including government bodies, researchers, and industries, in developing new and effective photocatalytic antimicrobial agents. Such changes warrant the modernization and upscaling of materials synthesis laboratories to support and expedite the mass production of materials at the industrial scale for the benefit of humankind and the environment. Despite the massive volume of publications reporting the potential usage of different types of metal-based nanomaterials as antimicrobial agents, reviews uncovering the similarities and differences among the various products remain lacking. This review details the basic and unique properties of metal-based nanoparticles, their use as photocatalytic antimicrobial agents, and their therapeutic modes of action. It shall be noted that compared to traditional antibiotics, the mode of action of photocatalytic metal-based nanomaterials for killing microorganisms are completely different, despite displaying promising performance against antibiotic-resistant bacteria. Besides, this review uncovers the differences in the mode of actions of metal oxide nanoparticles against different types of bacteria, as well as towards viruses. Last but not least, this review comprehensively describes previous published clinical trials and medical usages involving contemporary photocatalytic antimicrobial agents.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanoestruturas , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Bactérias , Óxidos , Metais
3.
Environ Res ; 223: 115403, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36754108

RESUMO

The design and development of eco-friendly fabrication of cost-effective electrochemical nonenzymatic biosensors with enhanced sensitivity and selectivity are one of the emerging area in nanomaterial and analytical chemistry. In this aspect, we developed a facile fabrication of tertiary nanocomposite material based on cobalt and polymelamine/nitrogen-doped graphitic porous carbon nanohybrid composite (Co-PM-NDGPC/SPE) for the application as a nonenzymatic electrochemical sensor to quantify glucose in human blood samples. Co-PM-NDGPC/SPE nanocomposite electrode fabrication was achieved using a single-step electrodeposition method under cyclic voltammetry (CV) technique under 1 M NH4Cl solution at 20 constitutive CV cycles (sweep rate 20 mV/s). Notably, the fabricated nonenzymatic electroactive nanocomposite material exhibited excellent electrocatalytic sensing towards the quantification of glucose in 0.1 M NaOH over a wide concentration range from 0.03 to 1.071 mM with a sensitive limit of detection 7.8 µM. Moreover, the Co-PM-NDGPC nanocomposite electrode with low charge transfer resistance (Rct∼81 Ω) and high ionic diffusion indicates excellent stability, reproducibility, and high sensitivity. The fabricated nanocomposite materials exhibit a commendable sensing response toward glucose molecules present in the blood serum samples recommends its usage in real-time applications.


Assuntos
Grafite , Nanocompostos , Humanos , Carbono/química , Glicemia , Cobalto , Porosidade , Nitrogênio , Reprodutibilidade dos Testes , Automonitorização da Glicemia , Técnicas Eletroquímicas/métodos , Glucose , Grafite/química , Nanocompostos/química
4.
Environ Res ; 217: 114758, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36400225

RESUMO

The concept of zero waste discharge has been gaining importance in recent years towards attaining a sustainable environment. Fruit processing industries generate millions of tons of byproducts like fruit peels and seeds, and their disposal poses an environmental threat. The concept of extracting value-added bioactive compounds from bio-waste is an excellent opportunity to mitigate environmental issues. To date, significant research has been carried out on the extraction of essential biomolecules, particularly polysaccharides from waste generated by fruit processing industries. In this review article, we aim to summarize the different extraction methodologies, characterization methods, and biomedical applications of polysaccharides extracted from seeds and peels of different fruit sources. The review also focuses on the general scheme of extraction of polysaccharides from fruit waste with special emphasis on various methods used in extraction. Also, the various types of polysaccharides obtained from fruit processing industrial wastes are explained in consonance with the important techniques related to the structural elucidation of polysaccharides obtained from seed and peel waste. The use of seed polysaccharides as pharmaceutical excipients and the application of peel polysaccharides possessing biological activities are also elaborated.


Assuntos
Resíduos Industriais , Eliminação de Resíduos , Resíduos Industriais/análise , Frutas/química , Sementes , Polissacarídeos/análise
5.
World J Cardiol ; 13(9): 483-492, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34621493

RESUMO

BACKGROUND: The quality of warfarin therapy can be determined by the time in the therapeutic range (TTR) of international normalized ratio (INR). The estimated minimum TTR needed to achieve a benefit from warfarin therapy is ≥ 60%. AIM: To determine TTR and the predictors of poor TTR among atrial fibrillation patients who receive warfarin therapy. METHODS: A retrospective observational study was conducted at a cardiology referral center in Selangor, Malaysia. A total of 420 patients with atrial fibrillation and under follow-up at the pharmacist led Warfarin Medication Therapeutic Adherence Clinic between January 2014 and December 2018 were included. Patients' clinical data, information related to warfarin therapy, and INR readings were traced through electronic Hospital Information system. A data collection form was used for data collection. The percentage of days when INR was within range was calculated using the Rosendaal method. The poor INR control category was defined as a TTR < 60%. Predictors for poor TTR were further determined by using logistic regression. RESULTS: A total of 420 patients [54.0% male; mean age 65.7 (10.9) years] were included. The calculated mean and median TTR were 60.6% ± 20.6% and 64% (interquartile range 48%-75%), respectively. Of the included patients, 57.6% (n = 242) were in the good control category and 42.4% (n = 178) were in the poor control category. The annual calculated mean TTR between the year 2014 and 2018 ranged from 59.7% and 67.3%. A high HAS-BLED score of ≥ 3 was associated with poor TTR (adjusted odds ratio, 2.525; 95% confidence interval: 1.6-3.9, P < 0.001). CONCLUSION: In our population, a high HAS-BLED score was associated with poor TTR. This could provide an important insight when initiating an oral anticoagulant for these patients. Patients with a high HAS-BLED score may obtain less benefit from warfarin therapy and should be considered for other available oral anticoagulants for maximum benefit.

6.
RSC Adv ; 11(35): 21781-21795, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35478800

RESUMO

This paper reports the synthesis of new transition metal oxide-modified CaO catalysts derived from eggshells for the transesterification of refined waste cooking oil. CaO is a well-known base catalyst for transesterification. However, its moderate basicity and low surface area have restricted its catalytic performance. Therefore, a new attempt was made to modify the CaO catalyst with transition metal oxides, including Ni, Cu and Zn oxides, via simple wetness impregnation method. The catalytic performance of the resulting modified CaO-based catalysts was evaluated through the transesterification reaction using refined waste cooking oil. The results showed that the NiO/CaO(10 : 90)(ES) catalyst calcined at 700 °C, demonstrated being highly potential as a catalyst. It gave the highest biodiesel production (97.3%) at the optimum conditions of 1 : 18 oil-to-methanol molar ratio, 6 wt% catalyst loading and 180 minutes reaction time as verified by response surface methodology (RSM). The high catalytic activity of NiO/CaO(10 : 90)(ES)(700 °C) was attributed to its high basicity (8.5867 mmol g-1) and relatively large surface area (7.1 m2 g-1). The acid value and free fatty acids of the biodiesel produced under optimal process conditions followed the EN 14214 and ASTM D6751 limit with 0.17 mg KOH per g (AV) and 0.09 mg KOH per g (FFA), respectively.

7.
Nanomaterials (Basel) ; 10(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936704

RESUMO

In this study, a series of TiO2 nanotubes (NTs) were synthesized employing electrochemical anodization of titanium foil in an ionic liquid solution containing a mixture of glycerol and choline chloride, acting as electrolyte. The as-synthesized TiO2 NTs were calcined at 350, 450, or 550 °C for a 2 h duration to investigate the influence of calcination temperature on NTs formation, morphology, surface properties, crystallinity, and subsequent photocatalytic activity for visible light photodegradation of gaseous formaldehyde (HCHO). Results showed that the calcination temperature has a significant effect on the structure and coverage of TiO2 NTs on the surface. Freshly synthesized TiO2 NTs showed better-ordered structure compared to calcined samples. There was significant pore rupture with increasing calcination temperature. The transformation from anatase to rutile phase appeared after calcination at 450 °C and the weight fraction of the rutile phase increased from 19% to 36% upon increasing the calcination temperature to 550 °C. The band gaps of the TiO2 NTs were in the range from 2.80 to 2.74 eV, shifting the active region of the materials to visible light. The presence of mixed anatase-rutile TiO2 phases in the sample calcined at 450 °C showed enhanced photoactivity, which was confirmed by the 21.56 mg∙L-1∙g-1 removal of gaseous formaldehyde under 120 min of visible light irradiation and displayed enhanced quantum yield, ∅HCHO of 17%.

8.
Beilstein J Nanotechnol ; 10: 1368-1379, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31355105

RESUMO

We report that transparent mesostructured silica/gold nanocomposite materials with an interpore distance of 4.1 nm, as-synthesized from a templated sol-gel synthesis method using discotic trinuclear gold(I) pyrazolate complex, were successfully utilized for the fabrication of thin film mesoporous silica nanocomposites containing gold nanoparticles. The material exhibited a highly ordered hexagonal structure when subjected to a thermal hydrogen reduction treatment at 210 °C. In contrast, when the material was subjected to calcination as a heat treatment from 190 to 450 °C, the thin film nanocomposites showed an intense d 100 X-ray diffraction peak. Moreover, gold nanoparticles inside the thin film nanocomposites were confirmed by the presence of the d 111 diffraction peak at 2θ = 38.2°, a surface plasmon resonance peak between 500-580 nm, and the spherical shape observed in the transmission electron microscope images, as well as the visual change in color from pink to purple. Interestingly, by simply dipping the material into a reaction solution of 4-nitrophenol at room temperature, the highly ordered structure of the as-fabricated silica/gold nanoparticle thin film composite after thermal hydrogen reduction at 210 °C resulted in an improved catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol compared to the material calcined at 250 °C. Such catalytic activity is due to the presence of gold nanoparticles of smaller size in the silicate channels of the highly ordered mesoporous film nanocomposites.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 124: 357-64, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24503155

RESUMO

A metal-free mesoporous carbon nitride (MCN) was investigated for the first time as an adsorbent for N-nitrosopyrrolidine (NPYR), which is one of the nitrosamine pollutants. Under the same condition, the adsorption capability of the MCN was found to be higher than that of the MCM-41. Since the adsorption isotherm was consistent with Langmuir and Freundlich model equations, it was suggested that the adsorption of NPYR molecules on the MCN occurred in the form of mono-molecular layer on the heterogeneous surface sites. It was proposed that MCN with suitable adsorption sites was beneficial for the adsorption of NPYR. The evidence on the interaction between the NPYR molecules and the MCN was supported by fluorescence spectroscopy. Two excitation wavelengths owing to the terminal N-C and N=C groups were used to monitor the interactions between the emission sites of the MCN and the NPYR molecules. It was confirmed that the intensity of the emission sites was quenched almost linearly with the concentration of NPYR. This result obviously suggested that the MCN would be applicable as a fluorescence sensor for detection of the NPYR molecules. From the Stern-Volmer plot, the quenching rate constant of terminal N-C groups was determined to be ca. two times higher than that of the N=C groups on MCN, suggesting that the terminal N-C groups on MCN would be the favoured sites interacted with the NPYR. Since initial concentration can be easily recovered, the interactions of NPYR on MCN were weak and might only involve electrostatic interactions.


Assuntos
N-Nitrosopirrolidina/química , Nitrilas/química , Adsorção , Fluorescência , Concentração de Íons de Hidrogênio , Cinética , Nitrogênio/química , Porosidade , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
10.
J Colloid Interface Sci ; 394: 490-7, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23380399

RESUMO

A microparticle material of gold/polystyrene-coated hollow titania was successfully synthesized. The synthesis steps involved hydrothermal synthesis of a carbon sphere from sucrose as a template, coating of the carbon sphere with titania, removal of the carbon sphere to produce hollow titania, followed by coating of polystyrene on the surface of hollow titania and then attachment of gold nanoparticles. It has been demonstrated that this material can float on water due to its low density and it is a potential catalyst for liquid-gas boundary catalysis in oxidation of benzyl alcohol by using molecular oxygen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...